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Abstract 22 
 23 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where 24 
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural 25 
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to 26 
support decision making for humanitarian assistance. The FEWS NET Land Data Assimilation 27 
System (FLDAS) global and Central Asia data streams described here combine meteorological 28 
reanalysis datasets and land surface models to generate routine estimates of snow-covered fraction, 29 
snow water equivalent, soil moisture, runoff and other variables representing the water and energy 30 
balance. This approach allows us to fill the gap created by the lack of in situ hydrologic data in the 31 
region. First, we describe the configuration of the FLDAS and the two resultant data streams: one, 32 
global, at ~1 month latency, provides monthly average outputs on a 10 km2 grid from 1982-present. 33 
The second data stream, Central Asia, at ~1 day latency, provides daily average outputs on a 1 km2 34 
grid from 2001-present. We describe our verification of these data that are compared to other 35 
remotely sensed estimates as well as qualitative field reports. These data and value-added products 36 
(e.g., anomalies and interactive time series) are hosted by NASA and USGS data portals for public 37 
use. The global data stream with a longer record, is useful for exploring interannual variability, 38 
relationships with atmospheric-oceanic teleconnections (e.g., ENSO), trends over time, and 39 
monitoring drought. Meanwhile, the higher spatial resolution Central Asia data stream, with lower 40 
latency, is useful for simulating snow-hydrologic dynamics in complex topography for monitoring 41 
snowpack and flood risk.  42 
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1 Introduction 43 

1.1 Central Asia Weather and Climate 44 

 45 
Figure 1a. Mean annual precipitation in Afghanistan from 1991-2020, overlayed on province 46 
boundaries. Map (USGS Knowelge Base, 2021) with data from Funk et al. (2015). 47 
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 48 
Figure 1b. Average maximum monthly temperature from (1986-2015), overlayed on province 49 
boundaries. Map (USGS Knowelge Base, 2021) with data from Verdin et al. (2020). 50 
 51 
Central Asia, a region that includes Afghanistan, is water-scarce receiving roughly 75% of its 52 
annual precipitation during November–April (Oki and Kanae, S., 2006). In Afghanistan, rainfall is 53 
highest in the northeast Hindu Kush Mountains and decreases toward the arid southwest Registan 54 
Desert (Fig. 1a). Temperature follows a similar pattern with cooler temperatures in the high 55 
elevation and wetter northeast and warmer temperature in the south, and southwest (Fig. 1b). 56 
Regional precipitation is strongly influenced by the El Niño-Southern Oscillation (ENSO).  La Niña 57 
condition are associated with below average precipitation (FEWS NET, 2020b) and El Niño 58 
conditions associated with above average precipitation (Barlow et al., 2016; Hoell et al., 2017; Rana 59 
et al., 2018; Hoell et al., 2018, 2020; FEWS NET, 2020a). Other dynamical factors with an 60 
important influence on precipitation include orography, storm tracks, and the Madden–Julian 61 
oscillation (MJO) (Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 2018). 62 
The last several years have experienced a number of ENSO events, with recent La Niña events in 63 
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2016-17, 2017-18, and 2020-2021 (NOAA CPC ENSO Cold & Warm Episodes by Season, 2021) 64 
that corresponded to droughts (FEWS NET, 2017b, 2018c, 2021). 65 
 66 
Despite Afghanistan’s semi-arid climate, agriculture is an important sector, contributing 23% of the 67 
gross domestic product and employing 44% of the national labor force (CIA World Factbook). High 68 
mountain snowpack and snowmelt runoff are important for agricultural water supply, and according 69 
to the Famine Early Warning Systems Network (FEWS NET, 2018b) is responsible for “providing 70 
over 80% of irrigation water used. The timing and duration of the snowmelt is a key factor in 71 
determining the volume of irrigation water and the length of time that it is available, as well as its 72 
availability for use in marginal areas that experience [variable] rainfall.”  Therefore, routine 73 
hydrologic monitoring, with a particular emphasis on snow, is critical for tracking agricultural 74 
conditions and provides early warning for food insecurity.  75 

1.2 Precipitation Data Availability in Afghanistan 76 

Sparse in-situ precipitation observations lead to uncertainty in gridded and satellite-based 77 
precipitation estimates which are important for environmental monitoring and driving hydrologic 78 
models. Precipitation station observations are used for (a) bias correction of satellite estimates and 79 
(b) validation of gridded products. In terms of gridded dataset development, Hoell et al. (2015) 80 
describe lack of station observations in Afghanistan, Iraq and Pakistan and how complex 81 
topography in these locations makes this issue particularly problematic. Barlow et al. (2016) also 82 
highlight the station availability across the region and how that influences uncertainties in the 83 
Global Precipitation Climatology Center (GPCC) version 6 dataset over Central Asia (Fig. 2a) and 84 
specifically Afghanistan over time (Fig. 2b). Related to validation, Yoon et al. (2019) highlight that 85 
the representativeness of the sparse in-situ data is a serious limitation in their evaluation of 86 
precipitation over High Mountain Asia.  87 
 88 
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  89 

  90 
Figure 2. a) Station data availability underlying the GPCC version 6 dataset, for the 1951–2010 91 
period, on the 0.5°-resolution grid over Central Asia. b) Number of Stations used as input to GPCC 92 
rainfall dataset in Afghanistan. 93 
 94 
Despite uncertainties, Schiemann et al. (2008) find that gridded precipitation estimates can 95 
qualitatively identify large scale spatial distribution of precipitation, seasonal cycle and interannual 96 
variability (i.e., wet and dry years) across Central Asia. Long term estimates of rainfall from satellite 97 
derived products, as well as derived historic time series from hydrologic modelling, can be used as a 98 
baseline of “observations,” from which we can have a sense of relative conditions, i.e., anomalies 99 
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and variability. When this historical record is harmonized with a routine monitoring system, current 100 
conditions can be placed in historical context. Anomaly-based representation of hydrologic 101 
extremes can provide confidence in modeled estimates that have the potential to influence 102 
agricultural, water resources and food security outcomes. 103 
 104 
In addition to reliance on the representation of relatively wet and dry conditions, a “convergence of 105 
evidence” approach that draws on (quasi-)independent sources of information is useful to 106 
understand actual conditions. For convergence of Earth observations, hydrologic models can 107 
generate ensembles of historic, current or future estimates of snow, streamflow, soil moisture, and 108 
evapotranspiration which can then be compared to satellite derived estimates of surface water (e.g. 109 
McNally et al., 2019), soil moisture (e.g. McNally et al., 2016), vegetation conditions and 110 
evapotranspiration (e.g. Pervez et al., 2021; Jung et al., 2019), snow cover (e.g. Arsenault et al., 111 
2014), in situ stream flow (e.g. Jung et al., 2017) and others. Hydrologic estimates can also be 112 
compared to outcomes in crop production e.g. (McNally et al., 2015; Davenport et al., 2019; Shukla 113 
et al., 2020), and nutrition, health, and food security (e.g. Grace and Davenport, 2021) to provide a 114 
qualitative understanding of both hydrologic model performance and conditions on the ground. In 115 
this paper we provide an example of 2018 where drought conditions were associated with crisis 116 
levels of acute food insecurity over most of Afghanistan (FEWS NET, 2018c). 117 
 118 
This paper describes the FLDAS hydrologic modeling system’s global and Central Asia data 119 
streams, which are designed for food and water security applications. These data streams provide a 120 
long historic record for contextualizing estimates, as well as low latency data for timely decision 121 
support. These data streams can also support research and monitoring by the broader food and water 122 
security community. The purpose of this data descriptor is four-fold: (1) describe the development 123 
of the moderate resolution, low latency FLDAS system to inform hydrologic monitoring for Central 124 
Asia, specifically Afghanistan, (2) increase awareness of these data resources which are intended to 125 
be a public good, (3) demonstrate how  our methods inform critical investigations that ultimately 126 
improve general understanding of water resources in this important region of the world, and (4) 127 
advocate for a convergence of evidence approach to hydrologic monitoring in locations where all 128 
sources of information contain some level of uncertainty. An outline of this data descriptor is as 129 
follows. First, in the Methods (section 2) we describe the hydrologic modeling system, parameters 130 
and meteorological inputs and model outputs. In the Results (section 3) we report comparisons to 131 
other precipitation estimates, as well as comparisons of modeled snow estimates to remotely sensed 132 
snow observations and find generally good agreement. Finally, we describe an application (section 133 
4) of these data to the Afghanistan drought of 2018. 134 
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2 Methods 135 

136 
Figure 3. The FEWS NET Land Data Assimilation System (FLDAS) domains for (A) the global 137 
data stream at 10 km2 spatial resolution, and ~1 month latency for monthly averaged hydrologic 138 
estimates and (B) the Central Asia data stream at 1 km2 spatial resolution and ~1 day latency for 139 
daily averaged hydrologic estimates. Imagery 2021 TerraMetrics, Map data © Google. 140 

2.1 Land Surface Modeling System & Parameters 141 

Land surface models (LSMs) can provide spatially and temporally continuous information about the 142 
water and energy budgets of the land surface. This information is useful for food and water security 143 
applications in places where in situ measurements of rainfall, soil moisture, snow and runoff are 144 
sparse. This is particularly relevant in mountainous places like Afghanistan where heterogeneous 145 
geography limits the representativeness of sparse in situ measurements. We use NASA’s Land 146 
Information System Framework (LISF), which is comprised of a pre-processor, the Land Data 147 
Toolkit (Arsenault et al., 2018), the Land Information System (Kumar et al., 2006; Peters-Lidard et 148 
al., 2007), and the Land Verification Toolkit (Kumar et al., 2012). To support the needs of FEWS 149 
NET we have developed a custom instance of the NASA LISF - the FEWS NET Land Data 150 
Assimilation System (FLDAS) (McNally et al., 2017). In this data descriptor we describe the two 151 
configurations of the FLDAS data streams used for Central Asia food and water security 152 
applications. It uses the Noah 3.6 Land Surface Model (Chen et al., 1996; Ek et al., 2003) and has 153 
two data streams. One, global, at ~1 month latency, provides monthly average outputs on a 10 km2 154 
grid from 1982-present. The second data stream, Central Asia, ~1 day latency, provides daily 155 
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average outputs at 1 km2 from 2001-present. While the two data stream specifications are largely the 156 
same, there are some differences related to the input parameters and specifications (Table 1) and 157 
model spin-up procedure.  158 
 159 
Table 1. FEWS NET Land Data Assimilation System (FLDAS) specifications for (A) global data 160 
stream, 10 km2, monthly with CHIRPS+MERRA-2. (B) Central Asia data stream 1 km2 daily with 161 
GDAS.  162 

 Global  Central Asia 

Spatial Extent 

 
179.95°W- 179.95°E, 59.95°S- 
89.95°N 

 
30-100°E, 21-56°N 

Landmask 
Land Data Toolkit (LDT) generated 
from MODIS (Arsenault et al. 2018) 

MOD44w (Carroll et al., 
2017) 

Landcover IGBP landcover IGBP landcover 

Parameters FAO Soils Reynolds et al (2000) FAO Soils  

Elevation SRTM (NASA JPL, 2013) SRTM  

Albedo 
NCEP albedo (Csiszar, I., and 
Gutman 1999) NCEP albedo  

Albedo 
Native Max Snow Albedo; Barlage 
(2005)  Native Max Snow Albedo 

Vegetation Parameters 
NCEP greenness fraction (Gutman 
and Ignatov 1997) NCEP greenness fraction 

Non-Precipitation 
Meteorological Inputs MERRA-2 meteorological variables 

GDAS meteorological 
variables 

Soil Texture FAO STATSGO soil texture FAO STATSGO soil texture 

Precipitation Inputs 
CHIRPS daily precipitation, 
downscaled to 3-hourly with LDT GDAS 3-hourly precipitation 

Specifications Noah 3.6.1 Noah 3.6.1 

Map Projection Geographic Latitude-Longitude 
Geographic Latitude-
Longitude  

Software Version 7.2 7.3 

Spatial Resolution 0.1 degree 0.01 degree 

Temporal Coverage 1982-01-01 to present 2001-10-01 to present 

Model Timestep 30-min timestep 15-min timestep 
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Met. Forcing Heights 
2m Air Temperature (Tair), 10m 
Wind 2m Tair, 10m Wind 

Soil layers (meters) 0-0.1; 0.1-0.4; 0.4-1.0; 1-2 0-0.1; 0.1-0.4; 0.4-1.0; 1-2 

Features  radiation correction radiation correction 
 163 
The parameters and specifications listed in Table 1 are largely default settings defined by the Noah 164 
LSM community (NCAR Research Applications Library, 2021). One important feature, added by 165 
the NASA LISF software development team, is the radiation correction described in Kumar et al. 166 
(2013), which improves the representation of snow dynamics with respect to slope and aspect 167 
corrections on the downward solar radiation field. The precipitation and other meteorological 168 
forcing variables, the period of record, and the spatial resolution were all determined to best meet 169 
the target end-users’ needs (i.e. FEWS NET) for routine agricultural and hydrologic monitoring. 170 
 171 
Another noteworthy feature is the method of the Central Asia data stream restart (i.e., annual 172 
initialization based on climatology), which was developed to address an issue of excessive inter-173 
annual snow accumulation found in the Noah LSM. First, a nine-year spin-up of the system was 174 
performed to produce stable snow and soil moisture conditions. Next, the resulting model states 175 
were compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Maximum 176 
Snow Extent data originally computed by NOAA National Operational Hydrologic Remote Sensing 177 
Center (Personal Communication Greg Fall, 2014). Then, the model estimated conditions were 178 
adjusted to produce a climatological model state for 1 October that is used to initialize each year. 179 
This approach ensures that the ‘water year’, beginning 1 October, is initialized with a reasonable 180 
amount of snowpack. While this method does effectively manage excessive inter-annual snow 181 
accumulation, the user should be aware that using the climatological model state will persist for ~1-182 
2 months in the water and energy balance of the LSM until they are superseded by “observed” 183 
meteorological inputs for the current water year. Preliminary work indicates that this issue will be 184 
resolved in future updates.  In contrast, the global data stream does not employ this 1 October 185 
initialization procedure. 186 

2.2 Meteorological Forcing Inputs    187 

Precipitation is the most important input to the FLDAS products. The lower-latency Central Asia 188 
data stream is a daily product, forced with NOAA’s Global Data Assimilation System (GDAS) 189 
(Derber et al., 1991) 3-hourly precipitation, which is  available from 2001-present at <1-day latency. 190 
Meanwhile, the global data stream is driven by the daily CHIRPS precipitation product, which is 191 
available from 1981 present at ~ 5-day latency for CHIRPS Preliminary and ~1.5-month latency for 192 
CHIRPS Final. As mentioned earlier, lack of rainfall stations for bias correction of satellite-derived 193 
estimates and evaluation poses a major challenge. However, we find that the GDAS rainfall product 194 
and the CHIRPS rainfall product are adequate for routine monitoring and, along with additional 195 
sources of remote sensed information, important for convergence of evidence when making a best 196 
guess at land surface states and fluxes. 197 
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 198 
Before the daily CHIRPS rainfall can be used as input to the FLDAS models, the daily precipitation 199 
must be pre-processed to a sub-daily timestep, using the LDT component of the LIS software. LDT 200 
temporally disaggregates the daily CHIRPS rainfall, using an approach similar to the North 201 
American LDAS precipitation downscaling method (Cosgrove et al., 2003). For this approach, we 202 
use a finer timescale MERRA-2 precipitation as a reference dataset to represents an accurate diurnal 203 
cycle. Coarser scale meteorological forcings are spatially disaggregated to the output resolution 204 
(0.01, and 0.1 degree for Central Asia and global, respectively) in the LIS using bilinear 205 
interpolation. 206 
 207 
The FLDAS models require additional meteorological inputs, including air temperature, humidity, 208 
radiation, and wind. The lower-latency Central Asia data stream uses GDAS 3-hourly 209 
meteorological inputs available from 2001-present at <1-day latency. For a longer historical record, 210 
the global data stream of FLDAS uses NASA’s Modern Era Reanalysis for Research and 211 
Applications version 2 (MERRA-2) (Gelaro et al., 2017) (1979-present) 1-hourly products with a 212 
two-week latency. 213 

2.3 Model Evaluation Statistics and Comparison Data 214 

To assess the quality of our modeling outputs, we conduct comparisons between (1) FLDAS 215 
satellite rainfall inputs and other satellite precipitation estimates, and (2) model estimated snow 216 
cover fraction and satellite derived snow cover fraction estimates.  217 
 218 
For the precipitation analysis, we compare CHIRPS and GDAS inputs to the Integrated Multi-219 
satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA precipitation product 220 
that integrates passive microwave and infrared satellite data with surface station observations 221 
(Huffman et al., 2020). The IMERG Final Run precipitation product, available at ~ 2-month latency 222 
(thus not suitable for our monitoring applications) has been used in numerous verification studies, 223 
including studies over Africa (Dezfuli et al., 2017), South America (Gadelha et al., 2019; Manz et 224 
al., 2017) and the mid-Atlantic region of the United States (Tan et al., 2016). These studies 225 
demonstrated that IMERG Final was able to capture large spatial patterns and seasonal and 226 
interannual patterns of rainfall. However, fewer studies have explored the performance of the lower 227 
latency IMERG Late Runs (DOI: 10.5067/GPM/IMERGDL/DAY/06) product that we use here. 228 
Kirshbaum et al. (2016) include a qualitative comparison for CHIRPS Final and IMERG Late for 229 
the Southern Africa start-of-season 2015. IMERG Late appears to perform similarly to the 1.5-230 
month latency CHIRPS Final and outperform the 1-day latency NOAA Rainfall Estimate version 2 231 
(RFE2) product (Xie and Arkin, 1996). Differences in the daily rainfall distribution patterns 232 
between IMERG Final and CHIRPS Final have also been shown to impact the resulting 233 
hydrological modeled output in simulations done using the NASA LIS framework (Sarmiento et al., 234 
2021). 235 
 236 
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For the Snow Cover Fraction (SCF) analysis, we compare the global and Central Asia data streams 237 
with the MODIS daily SCF product, MOD10A1 Collection 6 (Hall and Riggs, 2016). MOD10A1 238 
data is available at 500 m spatial resolution from February 2000 to the present. SCF is generated 239 
using the Normalized Difference Snow Index (NDSI) and additional filters to reduce error and flag 240 
uncertainty. Routine qualitative comparisons, which can be viewed on the NASA LIS FEWS NET 241 
project website generally show agreement between the model and MODIS SCF, as well as 242 
occurrence of cloud cover (https://ldas.gsfc.nasa.gov/fldas/models/central-asia). Following 243 
Arsenault et al. (2014) we aggregated pixels to 0.01 degree to reduce error related to sensor viewing 244 
angles and gridding artifacts. For this analysis, using MODIS SCF as “truth”, we determined True 245 
Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP). We then 246 
computed probability of detection (POD) where POD = (TP/(TP + FN)) and False Alarm Rate 247 
(FAR) where FAR = (FP/(FP + TN)).  We computed these for the total area of Afghanistan, as well 248 
as by basin (Fig. 3 a & b).  This paper does not compare modeled snow water equivalent (SWE) to 249 
independent snow observations because, as noted by Yoon et al. (2019), direct evaluation of snow 250 
mass and snow water equivalent (SWE) is difficult over Central Asia due to poor coverage of 251 
accurate snow observations.  We follow the Yoon et al. (2019) recommendation to conduct 252 
quantitative SCF comparisons and provide qualitative SWE analysis in Applications, Section 4. 253 

3 Results 254 

3.1 Gridded Rainfall Comparison 255 

For Central Asia applications we have two data streams with different precipitation inputs: the 256 
global data stream with CHIRPS precipitation at 10 km2 spatial resolution provides a long consistent 257 
data record, and the Central Asia data stream with GDAS precipitation at 1 km2 provides near real 258 
time, finer spatial resolution updates. These two data streams have their respective errors and allow 259 
data users to apply a convergence of evidence approach for food and water security applications. In 260 
this section we present a comparison of these precipitation inputs.  We also include IMERG Late for 261 
comparison as a high quality, low latency product. Future work will incorporate the IMERG 262 
precipitation inputs into FLDAS simulations. We also include MERRA-2 precipitation for 263 
comparison. Pair-wise correlation are shown in Table 2. CHIRPS Final, IMERG Late and GDAS (R 264 
≥ 0.90) are well correlated in terms of average daily precipitation (mm/day) at the monthly and 265 
annual (i.e., water year) timestep. MERRA-2 correlations with these datasets are lower at the 266 
monthly timestep (0.75 ≤ R ≤ 0.81) and annual timestep (0.64 ≤ R ≤ 0.69).  Fig. 4 shows the time 267 
series of the precipitation products for their overlapping period of record (2001-2020), which 268 
illustrates how they co-vary and some general patterns in terms of relative mm/day: GDAS (red) and 269 
IMERG Late (dashed-black) tend to have the highest average precipitation per day, CHIRPS (blue) 270 
has lower mm/day, but higher than MERRA-2 (dashed green) which tends to have the lowest 271 
average precipitation per day, until 2019 when it is notably higher than the other products. 272 
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 273 
 274 
Figure 4. Afghanistan country-wide average, annual average mm/day time series for CHIRPS, 275 
GDAS, IMERG Late, and MERRA-2. At the annual time step, Spearman rank correlations range 276 
from 0.64 (GDAS vs. MERRA-2) to 0.92 (GDAS vs. CHIRPS).  277 
 278 
Table 2. Afghanistan spatial average Spearman Rank Correlation of monthly (annual) precipitation 279 
2001-2020 280 

 GDAS CHIRPS Final IMERG Late 
GDAS x - - 
CHIRPS Final 0.91 (0.92) x - 
IMERG Late 0.91 (0.89) 0.92 (0.90) x 
MERRA-2 0.75 (0.64) 0.78 (0.68) 0.81(0.69) 

 281 

3.2 Remotely Sensed and Modeled Snow comparisons  282 

The estimation of snow is important for Afghanistan and Central Asia because it is an important 283 
contributor to water resources and irrigated agriculture.  Here, we compare mean SCF (Fig. 5a), 284 
POD, and FAR statistics (Fig. 5b) relative to MODIS SCF over eight hydrologic basins in 285 
Afghanistan. 286 
 287 
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 288 
Figure 5a. Mean snow cover fraction for the entire area and by basin for MODIS Snow Cover 289 
Fraction (SCF), Central Asia and global data streams. 290 
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  291 
Figure 5b. Probability of Detection (POD) of snow presence, and False Alarm Rate (FAR) for the 292 
Central Asia (CA) and global data streams relative to the MODIS SCF. 293 
 294 
Overall, both model runs estimate greater mean SCF than the MODIS SCF product. The Central 295 
Asia (CA) data stream has consistently higher mean snow cover for all basins compared to MODIS 296 
SCF estimates and the global data stream. Perhaps not surprisingly then it performs consistently 297 
better in POD (by basin = ~80%) except for the Western [Helmand] Basin. Similarly, the FAR of 298 
the CA is higher where POD is higher except for the Northern Basin. The difference in statistics 299 
may be related to the different inputs forcing or the higher spatial resolution of the Central Asia data 300 
stream. Kumar et al. (2013) note that higher spatial resolution was important for snow dominated 301 
basins. We also note the likely importance of the MERRA-2 and GDAS temperature forcing 302 
between the global data stream and the Central Asia data stream, respectively. The panels in Fig. 6 303 
provide additional insight into the differences between MODIS SCF and the two FLDAS runs for 304 
water year 2020. The green line (Central Asia) is consistently higher than the red, MODIS SCF 305 
estimates, and the blue, global data stream estimates. Both the models estimate higher SCF during 306 
peak coverage in the Upper Kabul and Kunar basins. The time series plots also illustrate 307 
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discontinuities in the MODIS SCF time series, likely related to cloud cover, which reduced the 308 
sample size for the remotely sensed vs model comparisons.  309 

 310 
Figure 6. Basin-averaged SCF for Water Year 2020 as estimated by global and Central Asia (CA) 311 
data streams, and MODIS SCF. Time series show generally a similar pattern with the CA typically 312 
having higher SCF values. These plots also demonstrate discontinuities in the MODIS SCF data that 313 
reduce the quality of quantitative comparisons but provide qualitative confirmation of adequate 314 
model performance. 315 

3.3 Discussion of results compared to previous studies 316 

Despite the lack of ground-based observations, our analysis shows that the remotely sensed 317 
estimates and the models have good correspondence with other sources of evidence in terms of 318 
seasonal timing and performance. This provides analysts with confidence when using the FLDAS 319 
snow estimates, in tandem with other sources, as an input to food security analysis. Our approach is 320 
supported by other studies that have explored the challenges of evaluating hydrologic estimates over 321 
the region (Yoon et al., 2019; Ghatak et al., 2018; Immerzeel et al., 2015; Qamer et al., 2019). With 322 
a study domain shifted to the east, Yoon et al. (2019) evaluate rainfall and near surface temperature 323 
estimates over the High Mountain Asia domain, including most of Afghanistan. They review how 324 
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these results compare to other studies (e.g. precipitation trends (Nguyen et al., 2018; Rodell et al., 325 
2018)), and their results suggest that the uncertainty in the meteorologic forcing is the dominant 326 
factor in the terrestrial water budget estimates. This is consistent with our results showing 327 
differences between the GDAS and CHIRPS+MERRA-2 driven outputs. Also consistent with our 328 
results, Yoon et al. (2019) show that their LSM ensembles of SCF have an average POD of 72% and 329 
FAR of 36%, which is within the range of our POD and FAR statistics (60-80% POD; 20-40% 330 
FAR) compared to MODIS SCF. Without a clear “winner” in their multi-model and multi-forcing 331 
experiments, Yoon et al. conclude that improvements in the meteorological boundary conditions 332 
would be needed to reduce the uncertainty in the terrestrial budget estimates. These sentiments are 333 
echoed in Qamer et al. (2019).  334 
 335 
One recent attempt to improve meteorological inputs in the region is from Ma et al. (2020) with the 336 
development of the AIMERG dataset that combines IMERG Final with APHRODITE (Asian 337 
Precipitation - Highly-Resolved Observational Data Integration Toward Evaluation) rain-gauge 338 
derived product (Yatagai et al., 2012).  Ultimately, it would be beneficial to have a global modeling 339 
system that used the best available inputs from each region. In the meantime, multi-forcing and 340 
multi-model ensembles, and convergence of evidence with other remotely sensed data and field 341 
reports, are a viable approach for providing hydrologic estimates for various applications. 342 

3.4 Summary of differences between the model runs 343 

Given the need for multiple data streams for convergence of evidence, we have summarized the pros 344 
and cons of the Central Asia and global data streams in Table 3. 345 
 346 
Table 3. Pros and cons of the two data streams 347 

 Central Asia: Noah 3.6 with 
GDAS (2000-present) 

Global: Noah 3.6 with 
CHIRPS+MERRA-2 (1982-present) 

PROS 
 

1 km2 less computationally intensive 

1 day latency, daily timestep longer time record 

Snow estimates available in USGS 
Early Warning eXplorer 

CHIRPS & MERRA-2 forcing spatial 
resolution does not change over time 
(stable climatology) 

 Water and Energy balance available in 
NASA GIOVANNI, Google Earth 
Engine, Climate Engine 

CONS more computationally intensive lower resolution (10 km2) 
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shorter time record ~30-day latency 

GDAS forcing resolution changes 
over time (unstable climatology) 
NOAA NCEP 
https://www.emc.ncep.noaa.gov/g
mb/STATS/html/model_changes.h
tml) 

not publicly available at daily timestep 

large data volume, difficult to 
move 

 

4 Applications 348 

These data from global and Central Asia data streams are routinely used in several FEWS NET 349 
information products listed in Table 4. There is a weekly briefing from NOAA’s Climate Prediction 350 
Center (CPC) International Desks on the past week’s weather conditions and 1– 2-week forecasts 351 
for FEW NET regions of interest, including Central Asia. There is also a monthly FEWS NET 352 
Seasonal Monitor and a monthly Seasonal Forecast Review for which these data provide 353 
information on the current state of the snowpack, soil moisture and runoff. These “observed 354 
conditions'' can then be qualitatively combined with forecasts ranging from 1 week to 3 months to 355 
assess potential hydro-meteorological hazards. To demonstrate the role of these data in the early 356 
warning process, at different points in the season, we provide an example of the 2017-2018 wet 357 
season in Afghanistan during a La Niña event. 358 
 359 
Table 4. Routine Applications of FLDAS Central Asia’s Afghanistan hydrologic data. 360 

Routine application of 
these data 

Weblink to updates Notes 

FEWS NET Global 
Weather Hazards 
Summary produced by 
NOAA CPC 

https://fews.net/global/global-weather-hazards/ 
 
https://www.cpc.ncep.noaa.gov/products/internatio
nal/index.shtml 

shapefiles 
https://ftp.cpc.ncep.noaa.gov/
fews/weather_hazards/  

USGS Seasonal Monitor https://earlywarning.usgs.gov/fews/search/Asia/Ce
ntral%20Asia/Afghanistan 
 
Archives: 
https://fews.net/sectors-
topics/sectors/agroclimatology 

Updated monthly from 
October - May, during the 
precipitation season. 
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FEWS NET Food 
Security Outlook Brief 

https://fews.net/central-asia/afghanistan Information on snow or other 
hydrology included if 
applicable 

Crop Monitor for Early 
Warning 

https://cropmonitor.org/index.php/cmreports/early
warning-report/ 

Information on early warning 
and crop conditions 

 361 

 4.1 Snow monitoring & Seasonal Outlooks  362 

As previously mentioned, and as shown in Fig. 7, Afghanistan and the broader region is strongly 363 
influenced by La Niña, which tends to increase the likelihood of dry events (Barlow et al., 2016; 364 
FEWS NET, 2020b). Depending on other factors, this may also increase the probability of negative 365 
snowpack anomalies, reduce springtime streamflow, and flood risk, and reduce summer irrigation 366 
availability and potentially crop yields. 367 

 368 
Figure 7. Timing of wet and dry conditions related to La Nina. Increased likelihood of dry 369 
conditions from Nov-May for Afghanistan during La Niña events. 370 
 371 
A La Niña Watch was issued by NOAA in September 2017 (NOAA, 2017). The FEWS NET 372 
October 2017 Food Security Outlook (FEWS NET, 2017a) stated that La Niña conditions were 373 
expected throughout the northern hemisphere fall and winter and that below-average precipitation 374 
was likely over much of Central Asia, including Afghanistan, during the 2017-2018 wet season. 375 
With the expectation of below average rainfall coupled with above average temperature forecasts, 376 
FEWS NET anticipated that snowpack would most likely be below average. In the context of food 377 

https://doi.org/10.5194/essd-2021-420

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



20 
 

security outcomes, it was assumed that areas planted with winter wheat were likely to be lower than 378 
usual, reducing land preparation activities and associated demand for labor. Two provinces of 379 
particular concern were Daykundi and Wardak (Fig. 8a brown borders), both located in the 380 
Helmand River Basin (Fig. 8a; grey shading).  Precipitation deficits in these provinces would lead to 381 
poor rangeland resources and pasture availability and would likely result in decreased livestock 382 
productivity and milk production through May. However, given that October was the very start of 383 
the wet season, there remained a large spread of possible outcomes: spatial and temporal rainfall 384 
distributions, and snowpack totals necessitating routine updates to assumptions. 385 
 386 
Monitoring continued onward in the season from October, tracking observations from remote 387 
sensing, models, and field reports as well as weather, sub-seasonal and seasonal forecasts. This 388 
information was used to regularly update expectations of end of season outcomes. Using the FLDAS 389 
Central Asia data stream, a December 21, 2017, NOAA CPC Weather Hazards Brief reported that 390 
parts of northern and central Afghanistan remained atypically snow free, and north-eastern high 391 
elevation areas exhibited snow water equivalent (SWE) deficits. SWE is a commonly used 392 
measurement of the amount of liquid water contained within the snowpack, and an indicator of the 393 
amount of water that will be released from the snowpack when it melts. By January 17, 2018, an 394 
abnormal dryness polygon was placed over northeast Afghanistan, the central highlands of 395 
Afghanistan based on below average snow water equivalent values from the FLDAS Central Asia 396 
estimates. Abnormal dryness is defined for an area that has registered cumulative 4-week 397 
precipitation and soil moisture ranking less than the 30th percentile, with a Standardized 398 
Precipitation Index (SPI) of 0.4 standard deviation below the mean. In addition, it is required that 399 
forecasts indicate below-average precipitation (less than 80% of normal) for that area during the 1-400 
week outlook period. By late February 2018, precipitation deficits and related SWE (Fig. 9) 401 
increased and met the criteria for “drought” (Fig. 8b). Drought is defined as an area that has 402 
previously been defined as “Abnormal Dryness” and has continued to register seasonal precipitation 403 
and soil moisture deficits since the beginning of the rainfall season. Specifically, an eight-week 404 
cumulative precipitation, soil moisture, and runoff below the 20th percentile rank, and an SPI of 0.8 405 
standard deviation below the mean are classification guidelines. 406 
 407 
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 408 
Figure 8.  (a) Map showing hydrological basins, with Helmand Basin in darker grey and location of 409 
Daykundi and Wardak provinces where food security conditions were of particular concern (b) 410 
NOAA CPC Afghanistan Hazard Report February 22-28, 2018 (CPC NOAA, 2018), map showing 411 
widespread abnormal dryness and drought, defined by 90-day precipitation deficits and extremely 412 
low snow water equivalent.  413 

 414 
Figure 9.  FLDAS Central Asia snow water equivalent (SWE) estimates for February 22, 2018.  415 
SWE deficits of >300 mm were widespread at this time.   416 
 417 
The February 2018 Food Security Outlook (FEWS NET, 2018b) provided the following updates, 418 
based on the CPC Hazards Reports and Seasonal Monitors: “Snow accumulation and cumulative 419 
precipitation were well below average for the season through February 2018, with some basins at or 420 
near record low snowpack, with data since 2002….These factors will likely have an adverse impact 421 
on staple production in marginal irrigated areas and in many rainfed areas. [Moreover, with] 422 
forecasts for above-average temperatures during the spring and summer, rangeland conditions are 423 
expected to be poor during the period of analysis through September 2018. This could have an 424 
adverse impact on pastoralists and agro-pastoralists, particularly in areas where livestock 425 
movements are limited by conflict.” The Crop Monitor for Early Warning February and March 2018 426 
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reports (GEOGLAM, 2018a, b) also cited reduced snowpack in Afghanistan and the negative 427 
impacts on winter wheat crops as well as irrigation water availability in the Spring. The story was 428 
also highlighted in NASA Earth Observatory March 2018 “Record Low Snowpack in Afghanistan” 429 
(Record Low Snowpack in Afghanistan, 2018).  430 
 431 
The USGS’s Early Warning eXplorer (Shukla et al., 2021) allows analysts to look at maps and time 432 
series for a variety of variables and specific provinces and river basins. Plots from EWX in Fig. 10 433 
show below average precipitation in provinces in the Helmand Basin for January and February. 434 
CHIRPS cumulative rainfall for 2017-18 vs the 18-year average for Day Kundi (a.k.a. Daykundi) 435 
Province showed near average conditions until December. From January cumulative rainfall 436 
remained below the 2000-2018 average throughout the rest of the season ending in May; the same 437 
pattern occurred in nearby Uruzgan Province. In neighboring Maydan Wardak (a.k.a Wardak) 438 
Province below average conditions were experienced in January and February but recovered in 439 
March to remain slightly above average. Day Kundi (Fig. 10a) and Wardak (Fig. 10b) are provinces 440 
located in the upper reaches of the Helmand Basin. Fig. 10d shows SWE averaged across the entire 441 
Helmand basin. The grey shading indicates the range of the minimum and maximum values, and the 442 
dashed blue line is the average. Initial snow conditions start above average until December when 443 
SWE deficits are near record low values through the beginning of February, and then persist at 444 
below-average levels.  445 
 446 

  447 
Figure 10. CHIRPS cumulative rainfall for 2017-18 vs average conditions for (a) Daykundi 448 
Province (b) Maydan Wardak Province. (c) Map showing location of Daykundi and Wardak 449 
provinces, and the Helmand Basin where food security conditions were of particular concern. (d) 450 
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Helmand Basin snow water equivalent (SWE) from the Central Asia data stream. The grey shading 451 
indicates the range of the minimum and maximum values, dashed blue line is the average, and black 452 
line is 2017-18. 453 
 454 
By the end of season in April 2018, FEWS NET (2018c) concluded that “below-average 455 
precipitation throughout most of the country during the October 2017 – May 2018 wet season has 456 
led to very low snowpack ...Low irrigation water availability is likely to have an adverse impact on 457 
yields for winter wheat and other ...barley, maize, and others.. particularly in downstream areas in 458 
regions with limited rainfall. ...The poor performance of the wet season and above average 459 
temperatures... exacerbated dry rangeland conditions in many areas, particularly in ..Sari Pul, [and 460 
surrounding] ...provinces. Pastoralists and agropastoralists in these areas will likely attempt to 461 
migrate to areas with better pasture and water availability or sell livestock at below-average prices.” 462 
At the same time UNICEF reported in April 2018 (500,000 children affected by drought in 463 
Afghanistan – UNICEF, 2018) that among “the [drought] affected provinces, Baghis, Bamyan, 464 
Daykundi, Ghor, Helmand, ... and Uruzgan are of critical priority for nutrition and water, sanitation 465 
and hygiene assistance”.   466 
 467 
Several months after a season and harvest has ended more statistics become available for further 468 
verification of the drought outcomes. The FEWS NET October 2018 Food Security Outlook (2018a) 469 
reported that the 2017/18 drought had significant negative impacts on rainfed wheat production and 470 
livestock pasture and body conditions across the country. Reporting statistics from the Afghanistan 471 
Ministry of Agriculture, Irrigation, and Livestock, the total wheat production for the 2017/18 472 
agriculture season was about 20% below average, where irrigated agriculture performed about 473 
average. However, rainfed agriculture production was only about 50% of average, most severely 474 
impacting households in in Badakhshan, Badhis, and Daykundi provinces where dry conditions, 475 
insecurity, poor incomes, and depleted assets were expected to continue to face emergency food 476 
insecurity though May 2019 characterized by large food consumption gaps reflected in acute 477 
malnutrition or are employing emergency coping strategies. 478 

5. Data Availability 479 

The Central Asia data described in this manuscript can be accessed at the NASA GES DISC 480 
repository under data doi 10.5067/VQ4CD3Y9YC0R. The data citation is the following: 481 
 482 
Jacob, Jossy and Slinski, Kimberly (NASA/GSFC/HSL) (2021), FLDAS Noah Land Surface Model 483 
L4 Central Asia Daily 0.01 x 0.01 degree, Greenbelt, MD, USA, Goddard Earth Sciences Data and 484 
Information Services Center (GES DISC), Accessed: [Data Access Date], 485 
10.5067/VQ4CD3Y9YC0R 486 
 487 
The Global data described in this manuscript can be accessed at the NASA GES DISC repository 488 
under data doi 10.5067/5NHC22T9375G. The data citation is the following: 489 
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 490 
McNally, Amy. NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly 491 
0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and 492 
Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/5NHC22T9375G 493 
 494 
Currently the USGS EROS Center provides images from these data: 495 
https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia, as well as an interactive data 496 
viewer, the USGS Early Warning eXplorer (EWX) https://earlywarning.usgs.gov/fews/software-497 
tools/1 (Shukla et al. 2021).  498 

6. Code availability 499 

The NASA Land Information System Framework (LISF) is publicly available and an open-source 500 
software. The software and technical support are available at https://github.com/NASA-LIS/LISF. 501 

7. Conclusion 502 

This paper describes a comprehensive hydrologic analysis system for food security monitoring in 503 
Central Asia, with analysis focusing on Afghanistan. Our intent is to provide the reader with 504 
substantial information regarding the configuration and specification of both the current global and 505 
Central Asia data streams.  These data are publicly available and available at near-real time for food 506 
security decision support. An important note is that, as an on-going initiative, FLDAS model version 507 
and parameters are routinely updated, and the user should consult the version updates provided by 508 
the NASA GES DISC data provider and documentation on USGS Early Warning website. For 509 
example, efforts are currently underway to upgrade to the Noah with multi parameterizations (Noah-510 
MP) (Niu et al., 2011) land surface model, which requires some changes in parameters for snow, 511 
glaciers and groundwater. This, and future changes will be informed by the strengths and 512 
weaknesses of the data stream configurations that we have discussed in this paper.  513 
 514 
This paper also provides model-model and model-remote sensing comparisons, as well as a review 515 
of other research that highlights the challenges of quantitative evaluation of models and remote 516 
sensing in this region. A key challenge to hydrologic modeling is the considerable uncertainty in the 517 
meteorological forcing, particularly precipitation, available for this region. Advancements in remote 518 
sensing and modeling should help reduce these uncertainties. In addition, the current land surface 519 
modeling and river routing frameworks reflect natural conditions, i.e., they do not include 520 
representation of anthropogenic impacts such as human water abstractions (e.g., dams for flood 521 
control or irrigation, water diversions, groundwater pumping, etc.) or land application of abstracted 522 
water (i.e., irrigation). These factors impact streamflow (through abstraction and irrigation flows) as 523 
well as estimates of soil moisture, evapotranspiration, and sensible heat flux (land surface 524 
temperatures) in irrigated areas. Therefore, it is important to be aware of the limitations and 525 
combine with other products (e.g., Normalized Difference Vegetation Index (NDVI) or Actual 526 
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Evapotranspiration (ETa) in irrigated areas) when exploring water and energy balance. Even with 527 
improvements to meteorological forcing and modeling parameterizations, errors will remain. 528 
Therefore, the ‘convergence of evidence’ approach that we advocate for here will continue to be 529 
important when assessing hydro-meteorological hazards and associated risks to food and water 530 
security. We hope that by making the data publicly available the broader food security and water 531 
resources communities will be able to provide insights that will lead to improvements in our 532 
understanding of the water and energy balance that will ultimately lead to improvements to food and 533 
water security decision support systems.  534 
 535 
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